In vitro UV-Visible and FTIR Spectroscopy Study of Low Power He-Ne Laser Irradiation on Human Blood

Mohammed Ali Haimid\(^1*\), Ali A. S. Marouf\(^2\) and M. D. Abdalla\(^3\)

\(^1\)Department of Physics, Faculty of Pure and Applied Science, International University of Africa, Sudan.

\(^2\)Institute of Laser, Sudan University of Science and Technology, Sudan.

\(^3\)Department of Physics, Faculty of Science, Sudan University of Science and Technology, Sudan.

Authors’ contributions

This work was carried out in collaboration between all authors. Author MAH designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Author AASM managed the analyses of the study. Author MDA managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJR2P/2019/46527

Editor(s):
(1) Dr. Sebahattin Tuzemen, Professor, Department of Physics, Faculty of Science, Ataturk University, Turkey.

Reviewer(s):
(1) Muhammad Waseem Akram, Institute of Fundamental and Frontier Sciences, University of Electronic science and Technology of China, China.
(2) Zlatin Zlatev, Trakia University, Bulgaria.

Complete Peer review History: http://www.sdiarticle3.com/review-history/46527

ABSTRACT

Laser irradiation has biostimulating effect in various cell types low power laser radiation is used clinically for skin and vascular disorders.

Aims: To investigate the effect of (He-Ne) laser (\(\lambda= 632\text{nm}, \text{power}=1\text{mW}\)) on human whole blood, after irradiated to different times from 10 min to 50 min.

Study Design: Human Whole Blood Irradiated to (He-Ne) laser(\(\lambda= 632\text{nm}, \text{power}=1\text{mW}\)).

Place and Duration of Study: Soba Hospital, Khartoum- Sudan, Institute of Laser, Sudan University of science and technology (SUST), February 2018.

Methodology: Blood samples were taken from healthy volunteers; blood sample irradiated to (He-Ne) laser and control compared; FTIR and UV-Vis spectrophotometer were used to study laser radiation effect.

Results: FTIR spectra and UV-vis absorption spectra of blood samples are compared before and...
1. INTRODUCTION

Laser is a device that generates coherent radiation which is used in medical applications such as cautering corrective eye surgery, and a source of heat for cutting. Nevertheless, there is much application of He-Ne laser in the medical field; for instance, Blood cell analysis (cytometry), for the diagnostic and treatment. Helium-Neon laser is a type of small gas laser with the typical operational wavelength of 632.8 nm in the red color of the visible spectrum [1]. The biostimulation effect of low-power laser irradiation has been studied and noticed for about two decades. Some progress was achieved in treating various pathologic processes [2,3,4]. Intravenous low power laser irradiation has been applied clinically to treat various diseases, and the results have been encouraging as to the research data in the literature so far, the bio-effects of laser stimulation are evident; however, the mechanism of interaction is not fully understood [5]. Photobiomodulations involves exposing tissues to low-level light. This type of therapy called Low-level laser therapy (LLLT), also known as cold laser therapy as the power densities used produces no heating effect on the tissues. LLLT has a photochemical effect which means the light is absorbed and causes a chemical change [6,7].

Spectroscopic technique such as FTIR and UV-Vis absorption was used to study the spectral differences in the serum of normal blood samples [8]. Blood samples were exposed to He-Ne laser (Wavelength λ = 632.8 nm, Power = 3mW). The FTIR spectra for FTIR spectra of irradiated blood samples. Showed significant changes [9]. He Ne laser (λ= 632nm, power=2mW) was used to irradiation human red blood cells absorption spectrum, FTIR and fluorescence spectra of RBC. The absorption spectrum of RBC after irradiated to He-Ne laser showed a significant decrease in absorbance. The FTIR spectrum of irradiated RBC clearly shows changes in transmittance [10]. Human blood exposed to low-intensity He–Ne-laser radiation caused clearly defined changes in the IR and visible absorption spectra of the blood and erythrocytes [11].

Human blood irradiated to yellow laser power density 450mW/cm2 showed a significant difference in the absorption of light with varying laser irradiation time [12].

Low power violet laser power 10 mW was used to irradiation on human blood and were investigated the effect laser on Some rheological factors of the human blood, such as complete blood count (CBC) parameters and blood sedimentation rate (BSR) study showed decreasing in The RBCs volume and ESR [13]. Human blood was exposed to He Ne laser (λ= 632nm, power=30mW) to investigate the effect of He Ne laser on viscosity and erythrocytes deformability and blood sedimentation rate (BSR), the study noticed a change in both viscosity and size of erythrocytes [14]. This paper study the effect of He-Ne laser (Wavelength λ = 632.8 nm, Power = 1mW on human whole blood with different exposure time using UV-Vis spectrophotometer and FTIR spectrometer.

2. MATERIAL AND METHODS

2.1 Samples Collection

Blood samples were collected from healthy volunteers; 3 ml of each volunteer by medical standard laboratory conditions and blood samples were saved in a tube to prevent from coagulation to Ethylenediaminetetraacetic acid (EDTA) and each sample was divided into two samples one sample was control and other exposed to the helium-neon laser with different exposure times.
2.2 Laser Irradiated

Whole blood Samples were irradiated to a Helium-Neon laser beam, continuous operating wave mode, as a radiation source (632.8 nm, 1 maw), for exposure time (10, 20, 30, 40 and 50) minutes. The distance between the laser source and the samples was set to be 10 cm and the diameter of a laser spot was chosen to be 1.5 cm. Fourier Transform Infra Red Spectra (FTIR) and UV-Vis spectrophotometer (Jasco-670) were used to studied the effect of laser radiation on human blood and were obtained FTIR and UV-Vis spectrum for He-Ne laser irradiated blood serum samples and non irradiated.

3. RESULTS AND DISCUSSION

3.1 FTIR Spectra Result

In the FTIR spectra of the whole blood without irradiation to laser presented Fig. 1. Table 1 shows the groups O-H, C=O, N=O, C-H, N-H, and C-O in the region between the wave

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Wave number cm⁻¹</th>
<th>Group</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3444.63</td>
<td>O-H</td>
<td>0.48</td>
</tr>
<tr>
<td>2</td>
<td>1650.95</td>
<td>C=O</td>
<td>1.19</td>
</tr>
<tr>
<td>3</td>
<td>1548.73</td>
<td>N=O</td>
<td>6.36</td>
</tr>
<tr>
<td>4</td>
<td>1452.30</td>
<td>C-H</td>
<td>14.26</td>
</tr>
<tr>
<td>5</td>
<td>1317.29</td>
<td>N-H</td>
<td>15.3</td>
</tr>
<tr>
<td>6</td>
<td>1168.78</td>
<td>C-O</td>
<td>17.12</td>
</tr>
</tbody>
</table>

Table 1. Show the FTIR spectral data (wave number, function group and transmission) for blood sample control

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Wave number cm⁻¹</th>
<th>Group</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3306.77</td>
<td>O-H</td>
<td>24.79</td>
</tr>
<tr>
<td>2</td>
<td>1650.96</td>
<td>C=O</td>
<td>25.63</td>
</tr>
<tr>
<td>3</td>
<td>1545.10</td>
<td>N=O</td>
<td>30.12</td>
</tr>
<tr>
<td>4</td>
<td>1451.73</td>
<td>C-H</td>
<td>38.87</td>
</tr>
<tr>
<td>5</td>
<td>1315.56</td>
<td>N-H</td>
<td>41.11</td>
</tr>
<tr>
<td>6</td>
<td>1161.74</td>
<td>C-O</td>
<td>43.24</td>
</tr>
<tr>
<td>7</td>
<td>3416.04</td>
<td>O-H</td>
<td>24.69</td>
</tr>
<tr>
<td>8</td>
<td>1651.63</td>
<td>C=O</td>
<td>26.81</td>
</tr>
<tr>
<td>9</td>
<td>1545.10</td>
<td>N=O</td>
<td>30.61</td>
</tr>
<tr>
<td>10</td>
<td>1451.01</td>
<td>C-H</td>
<td>38.74</td>
</tr>
<tr>
<td>11</td>
<td>1312.59</td>
<td>N-H</td>
<td>40.46</td>
</tr>
<tr>
<td>12</td>
<td>1161.74</td>
<td>C-O</td>
<td>42.05</td>
</tr>
<tr>
<td>13</td>
<td>3442.45</td>
<td>O-H</td>
<td>24.04</td>
</tr>
<tr>
<td>14</td>
<td>1651.63</td>
<td>C=O</td>
<td>26.02</td>
</tr>
<tr>
<td>15</td>
<td>1545.23</td>
<td>N=O</td>
<td>31.31</td>
</tr>
<tr>
<td>16</td>
<td>1451.01</td>
<td>C-H</td>
<td>39.80</td>
</tr>
<tr>
<td>17</td>
<td>1312.59</td>
<td>N-H</td>
<td>41.92</td>
</tr>
<tr>
<td>18</td>
<td>1167.96</td>
<td>C-O</td>
<td>42.31</td>
</tr>
<tr>
<td>19</td>
<td>3348.63</td>
<td>O-H</td>
<td>11.90</td>
</tr>
<tr>
<td>20</td>
<td>1651.41</td>
<td>C=O</td>
<td>14.21</td>
</tr>
<tr>
<td>21</td>
<td>1545.10</td>
<td>N=O</td>
<td>20.40</td>
</tr>
<tr>
<td>22</td>
<td>1444.23</td>
<td>C-H</td>
<td>30.48</td>
</tr>
<tr>
<td>23</td>
<td>1325.03</td>
<td>N-H</td>
<td>31.94</td>
</tr>
<tr>
<td>24</td>
<td>1167.96</td>
<td>C-O</td>
<td>33.94</td>
</tr>
<tr>
<td>25</td>
<td>33040.4</td>
<td>O-H</td>
<td>22.22</td>
</tr>
<tr>
<td>26</td>
<td>1651.63</td>
<td>C=O</td>
<td>24.03</td>
</tr>
<tr>
<td>27</td>
<td>1545.10</td>
<td>N=O</td>
<td>27.07</td>
</tr>
<tr>
<td>28</td>
<td>1457.01</td>
<td>C-H</td>
<td>34.36</td>
</tr>
<tr>
<td>29</td>
<td>1312.59</td>
<td>N-H</td>
<td>35.33</td>
</tr>
<tr>
<td>30</td>
<td>1167.96</td>
<td>C-O</td>
<td>36.19</td>
</tr>
</tbody>
</table>

Table 2. Show the FTIR spectral data (wave number, function group and transmission) for irradiated blood sample power 1mW
numbers 4000 to 500 cm\(^{-1}\). In the spectral region 2800–3700 cm\(^{-1}\), the band with \(\lambda_{\text{max}} = 3444.63\) cm\(^{-1}\) is O–H bond peak. Amide-I is mainly associated with C=O, C = O, and C–H stretching vibrations and also related to the backbone conformation. The wave numbers 1650.95 cm\(^{-1}\), 1548.73 cm\(^{-1}\), 1452.30 cm\(^{-1}\) indicate C = O, N=O and C - H peaks respectively. The absorption peak in the 1317.29 cm\(^{-1}\) and 1168.78 cm\(^{-1}\) arises due to the N-H stretching vibrations of the proteins methylene group of the proteins, and gives rise to the existence of glucose due to C-O symmetric stretching. The prominent absorption peak 3444.63 cm\(^{-1}\) is due to the N – H stretching mode (amide - A) of proteins. The most intense absorption band in proteins is the amide I peak, which is observed at 1650.95 1/cm. Amide I is mainly associated with C=O symmetric stretching and or C-O stretching vibrations. There are another very strong prominent amide absorptions one at 1545 1/cm due to strong N-H in-plane bending and termed as an Amide II band [15,16].

The whole blood sample is irradiated with He-Ne laser radiation for 10, 20, 30, 40min, and 50 min duration respectively, Fig. 2 and Table 2. Shows the groups associated with spectral peaks whole sample irradiated to He-Ne laser radiation at all times.

3.2 UV-vis Spectra Results

The absorption spectra of the whole blood in the range 300–800 nm Fig. 3. Contain absorption bands with \(\lambda_{\text{max}} = 340, 416\) nm, \(\lambda_{\text{max}} = 542\) and 576 nm. We investigated only those Changes in the absorption spectra of the whole blood exposed to the (He-Ne laser) radiation that was detected for all the samples studied Fig. 4. The UV-vis absorption increases for 10 and 40min but it decreases as the exposure time at 50 and it continues to decrease at30,20 minutes. due to increasing ligand electronegativity [17]. And concentration of absorbing centers is decreasing. This fluctuation of light absorption is known as a biphasic response. The mechanism of LLLT at the cellular level has been associated with the absorption of monochromatic visible and near infrared radiation. Effective tissue penetration is maximized at a specific optical window [18,19, 20]. Laser effect on biological tissues, Bio stimulated it; Fluctuation of light absorption illustrates the biphasic dose-response curve. When the blood sample is irradiated, the enzymatic activity of the membrane sodium (Na\(^{+}\)) and potassium (K\(^{+}\)) ion pump changes in dose and fluence-dependent manner. Consequently, the biological function of the cells is stimulated and increases the light absorption. But a further increase of irradiation time inhibits the enzymatic activities due to the suppression of the Na\(^{+}\) and K [21].

![Fig. 1. FTIR spectrum for normal blood samples (control)](image-url)
Fig. 2. FTIR spectrum for before and after irradiated blood to He-Ne laser from 10, 20, 30, 40 and 50 minute

Fig. 3. The relation between Absorbance (a) and wavelength (λ) for whole blood before irradiated to (He-Ne) laser power 1 mW

Fig. 4. The relation between Absorbance (a) and wavelength (λ) for whole blood before and after irradiated to (He-Ne) laser power 1 mW at difference exposure time 10, 20, 30, 40 and 50 minute
4. CONCLUSION

For all exposure time He-Ne laser (λ = 632nm, power=1mW) irradiation exposure to whole blood, the transmittance of C=O, O-H, N=O, C-O & C-H, N-H group transmittance increases show also significant changes and indicates a significant decreasing in their concentration.

In general peptide group’s bands show more changes. The secondary structures of blood proteins undergo conformational changes. The light absorption increases for 10, and 40 min but it decreases as the exposure time at 30 (Fig. 5), 20, and 50 minutes. This fluctuation of light absorption is known as biphasic response.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

11. Zalesskaya GA, Kalosha II. Effect of In vivo irradiation of blood by low-intensity

© 2019 Haimid et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/46527